Dealloyed Ruthenium Film Catalysts for Hydrogen Generation from Chemical Hydrides

نویسندگان

  • Ramis B. Serin
  • Nazrin Abdullayeva
  • Mehmet Sankir
چکیده

Thin-film ruthenium (Ru) and copper (Cu) binary alloys have been prepared on a Teflon™ backing layer by cosputtering of the precious and nonprecious metals, respectively. Alloys were then selectively dealloyed by sulfuric acid as an etchant, and their hydrogen generation catalysts performances were evaluated. Sputtering time and power of Cu atoms have been varied in order to tailor the hydrogen generation performances. Similarly, dealloying time and the sulfuric acid concentration have also been altered to tune the morphologies of the resulted films. A maximum hydrogen generation rate of 35 mL min-1 was achieved when Cu sputtering power and time were 200 W and 60 min and while acid concentration and dealloying time were 18 M and 90 min, respectively. It has also been demonstrated that the Ru content in the alloy after dealloying gradually increased with the increasing the sputtering power of Cu. After 90 min dealloying, the Ru to Cu ratio increased to about 190 times that of bare alloy. This is the key issue for observing higher catalytic activity. Interestingly, we have also presented template-free nanoforest-like structure formation within the context of one-step alloying and dealloying used in this study. Last but not least, the long-time hydrogen generation performances of the catalysts system have also been evaluated along 3600 min. During the first 600 min, the catalytic activity was quite stable, while about 24% of the catalytic activity decayed after 3000 min, which still makes these systems available for the development of robust catalyst systems in the area of hydrogen generation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hydrogen evolution reaction measurements of dealloyed porous NiCu

: Porous metals are of interest for their high surface area and potential for enhanced catalytic behavior. Electrodeposited NiCu thin films with a range of compositions were electrochemically dealloyed to selectively remove the Cu component. The film structure, composition, and reactivity of these samples were characterized both before and after the dealloying step using scanning electron micro...

متن کامل

Light-driven generation of chlorine and hydrogen from brine using highly selective Ru/Ti oxide redox catalysts

Ultrafine ruthenium–titanium oxide catalysts were directly produced using a continuous hydrothermal flow synthesis process and assessed as chloride oxidation catalysts. Selectivity towards chlorine (over oxygen) evolution was shown to generally increase with decreasing ruthenium content. The optimum catalyst was then used to make an anode for a light-driven brine-splitting demonstrator device t...

متن کامل

Phosphites as ligands in ruthenium-benzylidene catalysts for olefin metathesis.

The use of phosphites in second generation, ruthenium-based olefin metathesis pre-catalysts leads to an improvement in catalyst stability and activity at low catalyst loadings.

متن کامل

Transfer hydrogenation of cellulose to sugar alcohols over supported ruthenium catalysts.

Ru/C catalysts are active for the conversion of cellulose using 2-propanol or H(2) of 0.8 MPa as sources of hydrogen, whereas the Ru/Al(2)O(3) catalyst is inactive in both reactions, indicating that the Ru/C catalysts are remarkably effective for the cellulose conversion.

متن کامل

Synthesis and Characterization of Ru/Al2O3 Nanocatalyst for Ammonia Synthesis

Ru/Al2O3 catalysts were prepared by conventional incipient wetness impregnation as well as colloid deposition of RuCl3 precursor via in situ reduction with ethylene glycol (polyol) method on alumina support. The samples were characterized by TEM, XRD and TPR techniques. The catalytic performance tests were carried out in a fixed-bed micro-reactor under diffe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2017